首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92153篇
  免费   6856篇
  国内免费   6331篇
  2024年   38篇
  2023年   1109篇
  2022年   1354篇
  2021年   4778篇
  2020年   3242篇
  2019年   4080篇
  2018年   4007篇
  2017年   2905篇
  2016年   4116篇
  2015年   5967篇
  2014年   7006篇
  2013年   7390篇
  2012年   8665篇
  2011年   7875篇
  2010年   4573篇
  2009年   4261篇
  2008年   4890篇
  2007年   4219篇
  2006年   3615篇
  2005年   2886篇
  2004年   2377篇
  2003年   2144篇
  2002年   1745篇
  2001年   1477篇
  2000年   1348篇
  1999年   1425篇
  1998年   834篇
  1997年   898篇
  1996年   806篇
  1995年   783篇
  1994年   677篇
  1993年   573篇
  1992年   683篇
  1991年   537篇
  1990年   455篇
  1989年   334篇
  1988年   278篇
  1987年   220篇
  1986年   185篇
  1985年   210篇
  1984年   126篇
  1983年   120篇
  1982年   58篇
  1981年   24篇
  1980年   23篇
  1979年   19篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
91.
92.
93.
The CDKN1C gene encodes a cyclin‐dependent kinase inhibitor and is one of the key genes involved in the development of Beckwith–Wiedemann syndrome and cancer. In this study, using a direct sequencing approach based on a single nucleotide polymorphism (SNP) at genomic DNA and cDNA levels, we show that CDKN1C exhibits monoallelic expression in all seven studied organs (heart, liver, spleen, lung, kidney, muscle and subcutaneous fat) in cattle. To investigate how methylation regulates imprinting of CDKN1C in cattle, allele‐specific methylation patterns in two putative differential methylation regions (DMRs), the CDKN1C DMR and KvDMR1, were analyzed in three tissues (liver, spleen and lung) using bisulfite sequencing PCR. Our results show that in the CDKN1C DMR both parental alleles were unmethylated in all three analyzed tissues. In contrast, KvDMR1 was differentially methylated between the two parental alleles in the same tissues. Statistical analysis showed that there is a significant difference in the methylation level between the two parental alleles (< 0.01), confirming that this region is the DMR of KvDMR1 and that it may be correlated with CDKN1C imprinting.  相似文献   
94.
95.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
96.
  相似文献   
97.
In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30~35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01?±?0.15 log CFU/g and spores of Bacillus of about 10.30?±?0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P?<?0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P?<?0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.  相似文献   
98.
99.
To determine the photosynthetic characteristics of C3 plants and their sensitivity to CO2 at different altitudes on the Tibetan Plateau, hulless barley (Hordeum vulgare L. ssp. vulgare) was grown at altitudes of 4,333 m and 3,688 m. Using gas-exchange measurements, photosynthetic parameters were simulated, including the maximum net photosynthesis (P max) and the apparent quantum efficiency (α). Plants growing at higher altitude had higher net photosynthetic rates (P N), photosynthesis parameters (P max and α) and sensitivities to CO2 enhancement than plants growing at lower altitude on the Tibetan Plateau. The enhancements of P N, P max, and α for plants growing at higher altitude, corresponding with 10 μmol(CO2) mol−1 increments, were approximately 0.20∼0.45%, 0.05∼0.20% and 0.12∼0.36% greater, respectively, than for plants growing at lower altitude, respectively, where CO2 levels rose from 10 to 170 μmol(CO2) mol−1. Therefore, on the Tibetan Plateau, the changes in the photosynthetic capacities and the photosynthetic sensitivities to CO2 observed in the C3 plants grown above 3,688 m are likely to increase with altitude despite the decreasing CO2 partial pressure.  相似文献   
100.
Embryos of most fish develop externally and are exposed to an aquatic environment full of potential pathogens, whereas they have little or only limited ability to mount an efficient and protective response. How fish embryos survive pathogenic attacks remains poorly defined. Here we demonstrate that the maternal immunization of female zebrafish with formalin-killed Aeromonas hydrophila causes a significant increase in C3 and Bf contents in the mother, a corresponding rise in the offspring, and induces a remarkable increase in the hemolytic activities in both the mother and offspring. In addition, the embryos derived from the immunized mother are significantly more tolerant to A. hydrophila challenge than those from the unimmunized fish, and blocking C3 and Bf activities by injection of the antibodies against C3 and Bf into the embryos render them more susceptible to A. hydrophila. These results clearly show that the protection of zebrafish embryos against A. hydrophila can be achieved by the maternally-transferred immunity of the complement system operating via the alternative pathway. This appears to be the first report providing in vivo evidences for the protective role of the alternative complement components in the early embryos of zebrafish, paving the way for insights into the in vivo function of other maternally-transferred factors in fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号